Jump to content

Abietic acid

From Wikipedia, the free encyclopedia
(Redirected from Abietinic acid)
Abietic acid
Names
IUPAC name
Abieta-7,13-dien-18-oic acid
Systematic IUPAC name
(1R,4aR,4bR,10aR)-1,4a-Dimethyl-7-(propan-2-yl)-1,2,3,4,4a,4b,5,6,10,10a-decahydrophenanthrene-1-carboxylic acid
Other names
Abietinic acid; Sylvic acid
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.007.436 Edit this at Wikidata
EC Number
  • 208-173-3
KEGG
RTECS number
  • TP8580000
UNII
  • InChI=1S/C20H30O2/c1-13(2)14-6-8-16-15(12-14)7-9-17-19(16,3)10-5-11-20(17,4)18(21)22/h7,12-13,16-17H,5-6,8-11H2,1-4H3,(H,21,22)/t16-,17+,19+,20+/m0/s1 checkY
    Key: RSWGJHLUYNHPMX-ONCXSQPRSA-N checkY
  • InChI=1/C20H30O2/c1-13(2)14-6-8-16-15(12-14)7-9-17-19(16,3)10-5-11-20(17,4)18(21)22/h7,12-13,16-17H,5-6,8-11H2,1-4H3,(H,21,22)/t16-,17+,19+,20+/m0/s1
    Key: RSWGJHLUYNHPMX-ONCXSQPRBK
  • O=C(O)[C@]3([C@@H]2C/C=C1/C=C(\CC[C@@H]1[C@@]2(C)CCC3)C(C)C)C
Properties
C20H30O2
Molar mass 302.458 g·mol−1
Appearance Yellow resinous powder, crystals or chunks. Monoclinic plates (from EtOH/water). Colorless solid when pure.
Density 1.06 g/mL
Melting point 172–175 °C (342–347 °F; 445–448 K)[2]
Boiling point 250 °C; 482 °F; 523 K
Insoluble[2]
Solubility in other solvents Very soluble in acetone, petroleum ether, Et2O, and ethanol
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Irritant
GHS labelling:
GHS07: Exclamation mark
Warning
H317
P261, P272, P280, P302+P352, P321, P333+P313, P363, P501
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
1
0
0
Safety data sheet (SDS) MSDS
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Abietic acid (also known as abietinic acid or sylvic acid) is a diterpenoid found in coniferous trees. It is supposed to exist as a defend the host plant from insect attack or various wounds. Chemically, it is a complicated molecule featuring two alkene groups and a carboxylic acid within a chiral tricyclic framework. As the major component of rosin, it is a commercially important. Historically speaking, it was a major component of naval stores. It is the most common of the resin acids. Another common resin acid is pimaric acid, which converts to abietic acid upon heating.

Characteristics and occurrence

[edit]

Abietic acid is found in rosin obtained from pine trees.[3] Pure abietic acid is a colorless solid, but commercial samples are usually a glassy or partly crystalline yellowish solid that melts at temperatures as low as 85 °C (185 °F).[4] Abietic acid is soluble in alcohols, acetone, and ethers. Its esters and salts are called an abietates, e.g. ethyl abietate and sodium abietate.[5]

The ancient presence of abietic acid (and other resin acids), being abundant and resilient, can inferred by analysis of rocks and archeological samples. Through the process of diagenesis, abietic acid changes into a collection of simpler compounds called abietanes.

Biosynthesis

[edit]
Route from copalyl pyrophosphate to abietadiene , precursor to abietic acid (PP = pyrophosphate).

Abietic acid is derived from the diterpene abietadiene, which in turn is made from copalyl pyrophosphate (CPP), which is derived from geranylgeranyl pyrophosphate ( GGPP), the precursor to many diterpenoids. In air and in the presence of certain cytochrome P450 enzymes, abietadiene is oxidized to abietic acid. An entire family of so-called resin acids form similarly. Together with abietic acid, these resin acids are a major portion of rosin, the solid portion of the oleoresin of coniferous trees.

Abietenes are synthesized from geranylgeranyl diphosphate via a copalyl diphosphate intermediate by class 2 diterpene cyclases and class 1 diterpene syntheses.[6]

The conformation of the GGPP molecule dictates the stereochemistry of the CPP intermediate after cyclization. The stereochemistry of the typical abietane skeleton suggests a GGPP precursor with its fused cyclohexyl rings in a chair-chair ("normal") conformation, although some abietanes with alternative stereochemistry may be cyclized from CCP isomers containing alternative combinations of boat and chair cyclohexane conformers. After the initial cyclization to CPP, which forms rings A and B in the abietane skeleton, the C ring is formed with the help of a class I diterpene synthase enzyme. Subsequent methyl migration and dehydrogenation steps yield the abietene isomers.[6]

Preparation

[edit]

Abietic acid is extracted from tree rosin. Laboratory procedures illustrate the nature of the extraction, which is the basis of a substantial industry, formerly known as naval stores.[7]

Uses

[edit]

As a component of rosin and one of the principal resin acid]]s, abietic acid has many uses, e.g. in some paints, soaps, foods, soldering flux,

Safety

[edit]
  • As the chief component of rosin, abietic acid is approved by the US FDA as a miscellaneous food additive.[8]
  • Abietic acid is considered a "nonhazardous natural substance" in tall oil ("liquid rosin").[5]
  • In the U.S., abietic acid is listed in the inventory of the Toxic Substances Control Act.
  • Abietic acid is the primary irritant in pine wood and resin. As a contact allergen[9] it is the cause of abietic acid dermatitis. (However, compounds resulting from its oxidation by air elicit stronger responses.) [10]
  • 50% ethanol extracts from Resina pini of Pinus sp. (Pinaceae) showed inhibitory activity against testosterone 5α-reductase prepared from rat prostate. The fraction responsible for this activity was purified, and the active constituent was isolated and identified as abietic acid, which exhibited potent inhibitory activity against testosterone 5α-reductase in vitro.[11]

References

[edit]
  1. ^ National Toxicology Program, Institute of Environmental Health Sciences, National Institutes of Health (NTP). 1992. National Toxicology Program Chemical Repository Database. Research Triangle Park, North Carolina
  2. ^ a b Merck Index, 12th Edition, 3. Abietic Acid
  3. ^ "Abietic Acid". Dr. Duke's Phytochemical and Ethnobotanical Databases. Archived from the original on 2015-09-23. Retrieved 13 January 2012.
  4. ^ Hoiberg, Dale H., ed. (2010). "abietic acid". Encyclopædia Britannica. Vol. I: A-ak Bayes (15th ed.). Chicago, Illinois: Encyclopædia Britannica Inc. pp. 32. ISBN 978-1-59339-837-8.
  5. ^ a b Lars-Hugo Norlin "Tall Oil" in Ullmann's Encyclopedia of Industrial Chemistry 2002, Wiley-VCH, Weinheim.doi:10.1002/14356007.a26_057
  6. ^ a b Peters, Reuben J. (2010). "Two rings in them all: The labdane-related diterpenoids". Natural Product Reports. 27 (11): 1521–1530. doi:10.1039/c0np00019a. ISSN 0265-0568. PMC 3766046. PMID 20890488.
  7. ^ G. C. Harris and T. F. Sanderson (1963). "Abietic Acid". Organic Syntheses. 32: 1. doi:10.15227/orgsyn.032.0001.
  8. ^ Nutrition, Center for Food Safety and Applied (2022-08-25). "Food Additive Status List". FDA.
  9. ^ El Sayed, F; Manzur, F; Bayle, P; Marguery, MS; Bazex, J (1995). "Contact urticaria from abietic acid". Contact Dermatitis. 32 (6): 361–2. doi:10.1111/j.1600-0536.1995.tb00628.x. PMID 7554886. S2CID 36139468.
  10. ^ Hausen, BM; Krohn, K; Budianto, E (1990). "Contact allergy due to colophony (VII). Sensitizing studies with oxidation products of abietic and related acids". Contact Dermatitis. 23 (5): 352–8. doi:10.1111/j.1600-0536.1990.tb05171.x. PMID 2096024. S2CID 34726630.
  11. ^ Seong-Soo Roh, Moon-Ki Park and Yong-ung Kim (2010). "Abietic Acid from Resina Pini of Pinus Species as a Testosterone 5α-Reductase Inhibitor". J. Health Sci. 56 (4): 451–455. doi:10.1248/jhs.56.451.
[edit]